PHOTOSYNTHETIC PARAMETERS OF PHYTOPLANKTON IN THE CALIFORNIA CURRENT SYSTEM

J. EDUARDO VALDEZ-HOLGUIN
Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora
Rosales y Niños Héroes
Hermosillo, Sonora
México
jvaldez@guayacan.unsoo.mx

SAÚL ALVAREZ-BORREGO
Departamento de Ecología, CICESE
Apartado Postal 2732
Ensenada, Baja California
México

B. GREG MITCHELL
Scripps Institution of Oceanography
University of California, San Diego
9500 Gilman Drive
La Jolla, California 92030-0218
gmitchell@ucsd.edu

ABSTRACT

We analyzed photosynthesis-irradiance (P-E) and phytoplankton absorption data from the coastal waters of the Southern California Bight (SCB) as well as data in the literature for other coastal and oceanic regions of the California Current system (CCS). Since there is substantial variability within data sets, we conclude that it is not possible at this time to predict fine-scale variations in photosynthetic parameters. For simple primary production models, we recommend working averages for the CCS between northern California and Bahía de San Quintín (300 km south of San Diego) based on data we summarized from coastal and oceanic waters. For the upper half of the euphotic zone we propose to use the following averages: \(\alpha_B = 0.047 \pm 0.004 \) mg C (mg chl\(^{-1}\)) \(^{-1}\) h\(^{-1}\) (\(\mu \)mol quanta m\(^{-2}\) s\(^{-1}\))\(^{-1}\) (the initial slope of the photosynthesis-irradiance curve); and \(P_{\text{max}}^B = 8.60 \pm 0.060 \) mg C (mg chl\(^{-1}\)) \(^{-1}\) h\(^{-1}\) (assimilation number). A linear interpolation for the gradient of \(\alpha_B \) and \(P_{\text{max}}^B \) is recommended for the lower half of the euphotic zone (10\%–10\% \(E_o \) depths), with values for the 1\% \(E_o \) depth equal to 25\% of the values of the upper euphotic zone: \(\alpha_B = 0.012 \), and \(P_{\text{max}}^B = 2.15 \).

INTRODUCTION

The advent of remotely sensed ocean color data has made the synoptic estimation of primary productivity for large geographic areas an attainable goal. Empirical and semianalytical algorithms to estimate primary productivity from satellite-derived photosynthetic pigments have been compared (e.g., Balch et al. 1989; Platt et al. 1995; Sathyendranath et al. 1995). The parameters used in these algorithms belong to three categories (Morel 1991): environmental (e.g., location, atmospheric conditions); ecological (e.g., the chlorophyll vertical profile); and physiological (e.g., the photosynthesis-irradiance curve parameters, the chlorophyll-specific absorption coefficient of phytoplankton, photosynthetic quantum yields).

Given a set of ecological and physiological parameters, the evolution of productivity in response to environmental changes is unambiguously derived, since the physics involved are rather accurately modeled (Morel 1991). On the basis of the CalCOFI data set, Millán-Núñez et al. (1996, 1997) proposed regression models to predict the vertical profiles of chlorophyll (chl) from surface values for the California Current system (CCS). Fewer data exist, however, on the physiological parameters of phytoplankton.

The Southern California Bight (SCB) constitutes a unique physical environment within the CCS. A dramatic change in the angle of the coastline, coupled with the topography of the southern California offshore coastal area results in circulation patterns that differ significantly from other locations of the west coast of the United States and northern Baja California. During summer, the CCS bends shoreward south of San Diego, then poleward, recycling water through the SCB in the large-scale Southern California Countercurrent (Hickey 1993). The growth and productivity of SCB phytoplankton is intermediate when compared to other areas of the world's ocean. It is greater than the growth and productivity in the North Pacific Central Gyre, but less than that in nutrient-rich upwelling regions (Hardy 1993). Peláez and McGowan (1986) analyzed satellite color imagery and found a sharp zonal boundary just south of San Diego—the Ensenada Front. It coincides with the CCS onshore component and is best defined from about 100 km to 500 km offshore. It is an abrupt transition between two large and different biological water masses, with a threefold change in phytoplankton pigment content over a distance of a few kilometers, with very low surface-pigment concentrations in the southern, warmer, water mass. From June through winter the oligotrophic water mass intrudes into the Southern California Bight. This low-pigment area is located immediately offshore of the narrow coastal band of higher pigment, and it is continuous with the low-pigment region south and west of the Ensenada Front (Peláez and McGowan 1986).

The objective of this work was to characterize the parameters of the P-E curve: its initial slope \(\alpha_B \), and the maximum rate \(P_{\text{max}}^B \), both normalized to chl, for the coastal region of the Southern California Bight. We also estimated \(a_B(\lambda) \), the specific absorption coefficient of phytoplankton, which allowed us to derive maximum photosynthetic quantum efficiency \(\phi_{\text{max}} \) from \(\alpha_B \) and the spectral distribution of irradiance in our incubator. We analyze here the variability of these parameters at a...
station off Bahía de Todos Santos (100 km south of San Diego) for a period of 20 days, and compare our values with those in the literature for other coastal and oceanic regions of the CCS. Finally, we propose a set of working averages of the physiological parameters to be used in primary-productivity algorithms for the CCS region represented by the various data sets.

METHODS AND MATERIALS
From 20 July to 8 August 1994, daily samples were taken at a station 7 km west of Isla Todos Santos within the CCS (31°50’N, 116°53’W; fig. 1). Bahía de Todos Santos is near the southernmost extreme of the Southern California Bight (fig. 1.5 in Dailey et al. 1993). Sampling was done around noon. Wind speed and direction, and atmospheric temperature were measured at Punta Morro (fig. 1). Once each day we measured profiles of temperature and salinity (CTD; SeaBird Inc.), natural (daylight-induced) fluorescence, and photosynthetically available scalar irradiance (PNF-300, Biospherical Instr.).

We also took water samples from two depths, corresponding to 100% and 10% of the irradiance incident just below the sea surface (E_0). Water samples were transported to the laboratory on land, in 20 L glass bottles covered with dark cloth and placed in insulated boxes filled with seawater to maintain constant temperature. We assume that transportation time from the field to the laboratory (maximum, 2 hrs) did not affect the P-E relation of our samples since changes from high to low irradiance result in negligible photoacclimation (change of chlorophyll cell$^{-1}$) at time scales less than 5 hours (Post et al. 1984).

Upon arrival in the laboratory, chl samples were filtered through Whatman GF/F glass-fiber filters. The samples were later extracted in 90% acetone for 24 hours, and analyzed fluorometrically (Yentsch and Menzel 1963; Holm-Hansen et al. 1965; Venrick and Hayward 1984). Water samples were filtered through GF/F filters for particle absorption, which was measured with a Perkin-Elmer Lambda 6 spectrophotometer. Raw absorbances were corrected for the path-length amplification effect according to Mitchell (1990). Estimates of total particle absorption (a_p) were corrected for detrital absorption (a_d) following Kishino et al. (1985), to obtain an estimate of phytoplankton absorption (a_p^{phy}). Spectrophotometric phosphate concentration (PO_4) analyses were done following Strickland and Parsons (1972).

To generate the photosynthesis-irradiance (P-E) curves, 420 ml from each water sample were passed through a 333 μm mesh to remove large herbivores, then 14C was added to a final concentration of 0.5 μCi ml$^{-1}$. A 10 ml aliquot was pipetted into each of 36 scintillation vials, which were incubated for an hour in an incubator similar to the one designed by Talbot et al. (1985). Temperature was maintained at 16°C ± 2°C for all samples. Three additional samples were taken for dark incubation, and three more for a time-zero control; the latter were immediately acidified after filtration. After incubation, each sample was filtered through a 0.45 μm Gelman membrane filter, after which 0.2 ml of 1.2 N HCl was added to each filter. Radioactivity was determined with a Beckman LS5000 scintillation counter. Carbon assimilation was estimated according to Strickland and Parsons (1972).

The initial slope, α_B, was estimated with a linear regression of the low irradiance points. To estimate P_{max}^{B}, we fit the data points to Smith’s (1936) equation

$$P^B = (P_{max}^B \alpha^B E) \left[\left(P_{max}^B\right)^2 + (\alpha^B E)^2\right]^{-1/2},$$

using the STATISTICA software package. Maximum photosynthetic quantum efficiency (ϕ_{max}) was calculated by dividing α^B by the $a_{ph}^{*} (\lambda)$ weighted by the spectral irradiance of the P-E incubator (Scholfield et al. 1993; Sosik 1996).

RESULTS
Dominant winds were from the northwest, with large diurnal variations. During the first five days, maximum wind speeds were as high as 9 m s$^{-1}$ (not illustrated). Sea-surface temperature (T °C) was 16.5°–17° the first four days and decreased to 15° the following two days; then, as the winds relaxed to 3 m s$^{-1}$ on the tenth day, T increased to 20°. Thereafter, winds increased without reaching the intensities of the first days, and surface T decreased again to 16.5° on the thirteenth day. Finally, winds decreased toward the end of the sampling period, and surface T increased to 20.6° (fig. 2a). At the 10%
E_0 depth T behaved in a similar manner as at the surface. These temperature fluctuations are believed to be caused partly by local upwelling, as indicated by changes in isopycnal depths (fig. 3). Temperature differences from 1.5° to 5° between the surface and the 10% E_0 depth suggest strong stratification (fig. 2a).

Very clear skies during the first two days and on day 18 of our sampling period produced high incident scalar irradiance (E_0^-). But on the other sampling days, variable cloudiness caused E_0^- values lower than 500 µmol quanta m$^{-2}$ s$^{-1}$ (fig. 2b). The density field indicates vertical mixing up to 15 m on some dates (fig. 3). The 24.5 σ_t isopycnal fluctuated between 10 m and the surface up to day 18, then subsided deeper than 25 m after day 18. The 10% E_0 depth behaved similarly to the 24.5 σ_t isopycnal. Its minimum was near 10 m on the twelfth day, and its maximum was almost 30 m toward the end of our sampling period (fig. 3).

Phosphate concentration (PO_4) varied irregularly with time and was not correlated with T °C. In general, there were slightly higher PO_4 values at the 10% E_0 depth than at the surface (fig. 4). For our data set, PO_4 concentration and standard error (s/n$^{1/2}$) were 0.26 and 0.013 µM, respectively. We have used CalCOFI data from the upper 50 m for 1993–97 to derive empirical regressions of

![Figure 3. Vertical distribution of density, the 10% E_0 depth (dashed line), and the 24.5 σ_t isopycnal (bold line).](image)

![Figure 2. a, Temperature time series (surface and 10% E_0 depth); b, incident irradiance (E_0^-) time series.](image)

![Figure 4. Phosphate concentration (open symbols, µM) for surface and the 10% E_0 depth. Nitrate values (closed symbols, µM) are based on regression estimates from CalCOFI data.](image)
phosphate vs. nitrate (NO₃) that were used to estimate NO₃ in figure 4. Analysis of the CalCOFI data showed that there is residual PO₄ after NO₃ depletion, thus accounting for the poor correlation of PO₄ with temperatures over this narrow temperature range. In the CalCOFI data set, PO₄ is well correlated with temperatures lower than 15°C.

Depth of the fluorescence maximum was not significantly different from the 10% E_o depth (p < 0.10; fig. 5a). In general, there was no significant difference between surface chl and that at the 10% E_o depth (fig. 5b). However, during sampling days 8–13, chl was higher at the 10% E_o depth than at the surface (p ≤ 0.005). The minimum and maximum chl values, respectively, for the 10% E_o depth were 0.42 and 3.1 mg m⁻³, and for the surface they were 0.36 and 1.95 mg m⁻³. We had lowest chl values and highest temperatures in the middle and at the end of the sampling period (figs. 2a and 5b).

The chlorophyll-specific phytoplankton absorption spectra are shown in figure 6. Variations in the spectral shape are represented by changes in the ratios of the blue (440 nm) to red (675 nm) peaks. This ratio differed significantly between the 100% and 10% E_o depths only on day 1 (fig. 6c).

Analysis of P-E response indicated slight photoinhibition with irradiances higher than 600 μmol quanta m⁻² s⁻¹ (for example, surface samples on day 6 and day 8; fig. 7), but in general there was no photoinhibition up to 1,400 μmol quanta m⁻² s⁻¹. The average saturation parameter of photosynthesis (Eₛ = P₉₅ₐₓ/α) was 246 μmol quanta m⁻² s⁻¹ for the surface and 255 for the 10% E_o depth, with a standard error of 14 and 21 μmol quanta m⁻² s⁻¹, respectively. These Eₛ values are not statistically different, and the overall average of 250 μmol quanta m⁻² s⁻¹ can be adopted.

The initial slope, α₀, was variable; its mean and standard error for our whole data set were 0.039 and 0.005 mgC (mg chl)⁻¹ h⁻¹ (μmol quanta m⁻² s⁻¹)⁻¹, respectively. Except for days 6, 8, 9, and 19, α₀ values for both depths were very similar (fig. 8a). The maximum α₀ value was estimated for sampling day 8 (0.153 mg C

Figure 5. (a) Fluorescence maximum and the 10% E_o depths; (b) chlorophyll a time-series (surface and 10% E_o depth).

Figure 6. Phytoplankton pigment-specific absorption spectra (αₚₗ₉₉) for (A) 100% E_o depth, and (B) 10% E_o depth. C, Absorption ratio (440/676) time series.
Figure 7. Examples of photosynthesis-irradiance (P-E) curves at 100% and 10% E_o depths for different sampling dates.
(mg chl)$^{-1}$ h$^{-1}$ (μmol quanta m$^{-2}$ s$^{-1}$)$^{-1}$] for the surface. On the other hand, αB, values as low as 0.01 were estimated for the 10% E_c depth.

Like αB, P_{max}^B varied over time but with a greater similarity between the two sampled depths (fig. 8b). For the entire data set, P_{max}^B ranged from 2.5 to 23. The mean and standard error for P_{max}^B were 9.6 and 0.9 mg C mg chl$^{-1}$ h$^{-1}$, for all P-E data.

Because of its dependence on αB, and relatively little variability in a_{ph}^B, Φ_{max} showed the same pattern of variation as αB (fig. 8c). Minimum Φ_{max} values for both sampled depths were about 0.01 mol C (mol quanta)$^{-1}$, and maximum estimates were 0.088 for the 10% E_c depth and up to 0.169 for surface waters. The mean and standard error for Φ_{max} were 0.051 and 0.006 mol C (mol quanta)$^{-1}$ for our whole data set. However, error of individual samples was greater, and the highest Φ_{max} values were not significantly different from the theoretical maximum of 0.125. None of the three parameters (αB, P_{max}^B, and Φ_{max}) were correlated with either chl or T° C.

The phytoplankton absorption was well correlated with pigment (chl + phaeo) concentrations (fig. 9), as found by other investigators (Mitchell and Gefer 1988; Bricaud et al. 1995; Cleveland 1995; Sosik and Mitchell 1995). But unlike the modeling parameterizations of Cleveland (1995) or Bricaud et al. (1995), our study showed little nonlinearity in the a_{ph} versus chlorophyll relation at 440 or 675 nm, as shown by the exponent of the power fit, which is not significantly different from 1.0 (fig. 9). This may be caused by the relatively narrow range of pigment concentration in our data set. Our data at 675 nm agree well with the Bricaud et al. (1995) model, but both our data and the Bricaud et al. model are higher than the Cleveland (1995) model at this wavelength. At 440 nm our data are greater than either of the previous model predictions.

These differences are partly due to the fact that the earlier models were based on data processed with algorithms dependent on the Mitchell and Kiefer (1988) report, which results in a_{ph} values about 30% lower than the algorithm we used (Mitchell 1990). There is large variance in the source data sets of the previous models, and our data are within the range of those data.
DISCUSSION

Segovia-Zavala et al. (in press) reported maximum PO$_4$ values of 0.75 µM, and NO$_3$ values of 1.0 µM for coastal surface waters between San Diego and Bahía de Todos Santos during an intense upwelling event with minimum surface temperatures under 13°C. These are relatively low nutrient values for CCS upwelling at this temperature. Our nutrient values are lower because we did not have an upwelling event as intense as theirs (our lowest surface T was 15°C). Our higher T's and lower nutrients also indicate that there was not a significant "island mass effect" (Doty and Oguri 1956) due to Isla Todos Santos. Smith et al. (1987) also reported relatively low near-surface nutrients for a transect through the northern extremity of the SCB region (Sosik and Mitchell 1995; Hayward et al. 1996).

Bahía de San Quintín, 200 km south of Bahía de Todos Santos, is about 100 km south of the point where the oligotrophic intrusion turns back offshore (surface geostrophic flow shown in fig. 27 of Reid 1988). During non-El Niño years, strong upwelling events occur in the area off Bahía de San Quintín, with minimum surface T of 11°C in July (Alvarez-Borrego and Alvarez-Borrego 1982), more than 4°C lower than our minimum surface T. In Bahía de San Quintín the maximum reported surface PO$_4$ and NO$_3$ values for summer are 2.5 and 12 µM (Millán-Nuñez et al. 1982). North of the SCB, off Point Sur (35 km south of Monterey Bay), maximum surface NO$_3$ values reported for an upwelling event in June were around 24 µM (Traganza 1985). Thus, north and south of the bight, nutrients are much higher than inside the bight. Our relatively low nutrient concentrations, and also those of Segovia-Zavala et al. (in press) and Smith et al. (1987), are consistent with the concept that our site was only slightly influenced by coastal upwelling and was dominated by the well-described oligotrophic north-flowing currents (Hickey 1993; Hayward et al. 1996).

In the coastal waters of the bight, chl values are also lower than in the coastal waters off Bahía de San Quintín and off Point Sur. Our maximum surface chl values were near 2 mg m$^{-3}$, often in the range 0.5–1.5 mg m$^{-3}$ (fig. 5b). Our data are in agreement with the chl time series at Scripps Pier—where chl values are typically in the range 0.5–1.5 mg m$^{-3}$, with some relatively isolated peaks greater than 5 mg m$^{-3}$—and with CalCOFI cruise data for within the bight (Sosik and Mitchell 1995; Hayward et al. 1996). Chl values reported for waters off Bahía de San Quintín are often larger than 5 mg m$^{-3}$, with peaks larger than 15 mg m$^{-3}$ in summer (Millán-Nuñéz et al. 1982). Similar high chlorophyll concentrations are observed in northern California waters in the upwelling plumes (Hood et al. 1991).

Both photosynthetic parameters, α^B and P^max, showed great variability over the sampling period. This agrees with a 70-day time series reported by Coté and Platt (1983) for Bedford Basin, and with other reports for the CCS (Harding et al. 1982; Prézelin et al. 1987; Schofield et al. 1991). According to Coté and Platt, phytoplankton cells respond fairly rapidly to changing environmental conditions, close to the order of a generation time. Harding et al. (1982) demonstrated large diel variability in α^B and P^max. Hood et al. (1991) and Schofield et al. (1991) also found relatively large variability for these two parameters in northern California and at the northern end of the Southern California Bight, respectively.

These reports for the CCS region place considerable doubt on our ability to predict instantaneous primary production rates by using satellite estimates of chl and irradiance. Ecological and physiological models are not yet capable of predicting the short-term P-E parameters. Nevertheless, it is possible to estimate mean values of the P-E parameters to calculate primary productivity for large time and space scales to which the data apply (Sathyendranath et al. 1995).

Millán-Nuñéz et al. (1997) algorithms cannot predict the instantaneous chl profiles for a particular geographic location in the CCS, but they are appropriate at regional and seasonal space and time scales. In a similar manner, we might be able to find acceptable averages of the photosynthetic parameters for the CCS region, in order to apply algorithms to estimate primary productivity from chl and light data. Although there is evident short-term variability in P-E relationships, it has still been proposed by Platt and Sathyendranath (1988) that larger-scale biogeographic provinces can be represented by mean parameters. This approach has been applied to provinces of the Atlantic (Sathyendranath et al. 1995) and to northern California waters by Moisan and Hofmann (1996), who proposed using a regional mean set of P-E parameters based on Hood et al. (1991), with diel variability specified as in MacCaull and Platt (1997).

Two relevant questions are: How large is the region within the CCS biogeographic domain for which our data apply? and, What seasonal and interannual time scales can be represented? Taking into consideration that photosynthetic parameters depend mainly on the phytoplankton light regime, we may explore the possibility that the average values of our photosynthetic parameters are representative of a much larger area than just the southern extremity of the SCB and are also representative of different seasons and years.

Malone (1971) reported phytoplankton assimilation ratios for coastal waters off Monterey and for an offshore area as far as 130°W (about 500 km offshore) and reported a mean assimilation ratio of 7.4 ± 1.0 (95% confidence limits) for coastal phytoplankton and 7.7 ± 1.1
for offshore phytoplankton with no significant difference. Malone (1971) estimated assimilation ratios with incubations under fluorescent light with 0.06 langleyes min⁻¹, which corresponds to about 210 μmol quanta m⁻² s⁻¹. This value is lower than our mean \(E_o \) of 250. Thus his “assimilation ratios” may not have been at saturating irradiance like the \(P^{B\max} \) values we report.

Gaxiola-Castro and Alvarez-Borrego (1991) tested the hypothesis that greater primary productivity on the cold side of the Ensenada Front is due to higher assimilation numbers. They rejected the hypothesis, finding no significant difference between relative \(P^{B\max} \) values from both sides of the front. They attributed the higher primary productivity values on the cold side to the shallow subsurface chl maximum, which causes less limitation of light for the phytoplankton. Unfortunately, the absolute value of the \(^{14}C \) activity added by Gaxiola-Castro and Alvarez-Borrego (1991) to their incubation samples was uncertain (but constant), which is why they used relative assimilation numbers instead of absolute values.

Lara-Lara et al. (1980) and Millán-Núñez et al. (1982) reported phytoplankton assimilation ratios for surface waters off San Quintín, derived from summer in situ \(^{14}C \) incubations carried out in the morning, noon, and afternoon. Possibly at noon they had saturating irradiances, so their noon assimilation ratios should be close to \(P^{B\max} \) values. The mean ± standard error of Lara-Lara et al.’s (1980) noon values are 7.0 ± 0.57 mg C mg chl⁻¹ h⁻¹; Millán-Núñez et al.’s (1982) noon values are 6.2 ± 0.66 mg C mg chl⁻¹ h⁻¹.

We could compare Malone’s (1971), Lara-Lara et al.’s (1980), and Millán-Núñez et al.’s (1982) assimilation ratios with our \(P^{B\max} \) values to test the hypothesis that lower surface chl values in the coastal waters of the SCB, with respect to those of coastal waters to the north and south, may be associated with lower photosynthetic parameters of phytoplankton. The alternative hypothesis is that photosynthetic parameters are not related to phytoplankton biomass, and their values in the SCB waters are not significantly lower than those of waters farther north and farther south, off San Quintín and off Monterey.

Strictu sensu, we cannot run a proper statistical test, because assimilation ratios for San Quintín and off Monterey may not correspond to optimum irradiances and thus may be lower than \(P^{B\max} \) values. Furthermore, when different laboratories generate P-E curves, the reported P-E parameters differ significantly, even when the same water sample is used (Richardson 1991). Nevertheless, we note that with lower nutrient concentrations and phytoplankton biomass values, our mean \(P^{B\max} \) values are not lower than assimilation ratios of Malone (1971), Lara-Lara et al. (1980), and Millán-Núñez et al. (1982). At the 95% confidence level our \(P^{B\max} \) mean overlaps theirs.

In table 1, we have assembled P-E, \(a^{*\max} \), and \(\phi_{\max} \) data that have been reported for the CCS from northern and southern California, including coastal waters and open-ocean waters up to 500 km offshore. Phytoplankton assemblages in coastal California waters seem to behave similarly to those of oceanic waters across the Ensenada Front with respect to photosynthetic parameters. In other words, lower nutrients and chl in the SCB are not associated with lower photosynthetic parameters. This agrees with the conclusion of Cullen et al. (1992) that phytoplankton are acclimated to their irradiance regimes and that nutrients have a small influence on assimilation ratios and P-E parameters. Nutrients appear to be a major factor regulating the standing stock of phytoplankton (Eppley et al. 1979). Thus seasonal and interannual variations in the relative distributions of colder high-nutrient water and warmer low-nutrient water may not strongly influence the P-E parameters.

For our data, \(P^{B\max} \), and \(\alpha^B \) for surface waters are not significantly different \((P > 0.05)\) from those of the 10% \(E_o \) depth (fig. 8b, table 1). This agrees with Prézelin et al. (1987), who found similar values for \(P^{B\max} \) values for the water column between the surface and the 10% \(E_o \) depth, at the northern extreme of the SCB. Also, Gaxiola-Castro and Alvarez-Borrego (1991) reported similar relative \(P^{B\max} \) values for the water column between the surface and the 10% \(E_o \) depth on both sides of the Ensenada Front. Prézelin et al. (1987) and Gaxiola-Castro and Alvarez-Borrego (1991) reported much lower values for the 1% \(E_o \) depth—about 25% of the surface values. For the upper half of the euphotic zone (10%–100% \(E_o \)), the mean \(P^{B\max} \) [8.6 ± 0.60 mg C (mg chl⁻¹ h⁻¹)] and \(\alpha^B \) [0.047 ± 0.004 mg C (mg chl⁻¹ h⁻¹)] values in table 1 are proposed for the region between San Quintín and Point Sur (near Monterey Bay). Also, the results of others (Malone 1971; Gaxiola-Castro 1991; Hood et al. 1991; Sosik 1996) make it possible for us to extend this region offshore to include the oceanic area of the CCS.

We propose a linear variation of \(\alpha^B \) and \(P^{B\max} \) for the lower half (10%–1% \(E_o \) depths), with values for the 1% \(E_o \) depth of \(\alpha^B = 0.012 \) and \(P^{B\max} = 2.15 \) where the 1% irradiance depth values are 25% of the values recommended for the upper euphotic zone (Gaxiola-Castro and Alvarez-Borrego 1991). We have few data in table 1 for the 1% light level or the deep chl maximum. Prézelin et al. (1987) and Schofield et al. (1991) tended to have estimates lower than other reports for the 10%–100% depths, so we believe their deeper data may be an underestimate. When estimating integrated primary productivity, errors for the lower half of the euphotic zone due to errors in P-E parameters will be
TABLE 1

Summary of Photosynthetic Parameters for the California Current System (Standard Error in Parentheses)

<table>
<thead>
<tr>
<th>Data source</th>
<th>Month and year</th>
<th>Sample time</th>
<th>(\alpha^B)</th>
<th>(P_{\text{max}}^B)</th>
<th>(\alpha_{\phi(440)}^B)</th>
<th>(\phi_{\text{max}}^B)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>May–Aug. 1980</td>
<td>1200–1600</td>
<td>0.055</td>
<td>8.60</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Prêzelin et al. 1987</td>
<td>July 1985</td>
<td>0800–1600</td>
<td>0.053</td>
<td>6.06</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>100% (E_c)</td>
<td>July 1985</td>
<td>0800–1600</td>
<td>0.061</td>
<td>6.75</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1% (E_c)</td>
<td>July 1985</td>
<td>0800–1600</td>
<td>0.035</td>
<td>1.25</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Hood et al. 1991</td>
<td>June 1987</td>
<td>1200–1600</td>
<td>0.092</td>
<td>10.98</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>0–80 m</td>
<td>June 1987</td>
<td>1200–1600</td>
<td>(0.034)</td>
<td>(4.69)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Schofield et al. 1991</td>
<td>July–Aug. 1988</td>
<td>Noon estimated</td>
<td>0.011</td>
<td>4.14</td>
<td>—</td>
<td>0.030</td>
</tr>
<tr>
<td>Surface</td>
<td></td>
<td></td>
<td>(0.003)</td>
<td>(0.73)</td>
<td>—</td>
<td>(0.005)</td>
</tr>
<tr>
<td>chl max</td>
<td>July–Aug. 1988</td>
<td>Noon estimated</td>
<td>0.015</td>
<td>1.00</td>
<td>—</td>
<td>0.043</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.008)</td>
<td>(0.13)</td>
<td>—</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Sosik 1996</td>
<td>Jan.–Apr. 1992</td>
<td>1000–1200</td>
<td>—</td>
<td>—</td>
<td>0.062</td>
<td>0.028</td>
</tr>
<tr>
<td>100% (E_c)</td>
<td>Jan.–Apr. 1992</td>
<td>1000–1200</td>
<td>—</td>
<td>—</td>
<td>0.048</td>
<td>0.047</td>
</tr>
<tr>
<td>4.5% (E_c)</td>
<td>Jan.–Apr. 1992</td>
<td>1000–1200</td>
<td>—</td>
<td>—</td>
<td>(0.017)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>This report</td>
<td>July–Aug. 1994</td>
<td>1200–1300</td>
<td>0.050</td>
<td>11.32</td>
<td>0.055</td>
<td>0.066</td>
</tr>
<tr>
<td>100% (E_c)</td>
<td>July–Aug. 1994</td>
<td>1200–1300</td>
<td>(0.008)</td>
<td>(1.36)</td>
<td>(0.002)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>1% (E_c)</td>
<td>July–Aug. 1994</td>
<td>1200–1300</td>
<td>0.028</td>
<td>7.95</td>
<td>0.050</td>
<td>0.037</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.003)</td>
<td>(0.96)</td>
<td>(0.002)</td>
<td>(0.005)</td>
</tr>
</tbody>
</table>

Average values for all reports from 100% to 10% \(E_c \) depth

<table>
<thead>
<tr>
<th>(\alpha^B)</th>
<th>(P_{\text{max}}^B)</th>
<th>(\alpha_{\phi(440)}^B)</th>
<th>(\phi_{\text{max}}^B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.047</td>
<td>8.60</td>
<td>0.060</td>
<td>0.040</td>
</tr>
</tbody>
</table>

Average values for all reports at 1% \(E_c \) or chl maximum depth

<table>
<thead>
<tr>
<th>(\alpha^B)</th>
<th>(P_{\text{max}}^B)</th>
<th>(\alpha_{\phi(440)}^B)</th>
<th>(\phi_{\text{max}}^B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.028</td>
<td>1.17</td>
<td>—</td>
<td>0.043</td>
</tr>
</tbody>
</table>

The units for the parameters are:

- \(\alpha^B \) mg C (mg chl)$^{-1}$ (mol E m$^{-2}$ s$^{-1}$)$^{-1}$
- \(P_{\text{max}}^B \) mg C (mg chl)$^{-1}$
- \(\alpha_{\phi(440)}^B \) m2 (mg chl+phaeo)$^{-1}$
- \(\phi_{\text{max}}^B \) mol C (mol quanta)$^{-1}$

Relatively small, because irradiance levels are low (Millán-Núñez et al. 1997). Our proposed averages and the vertical structure of these parameters agree with data reported by others, as summarized in table 1.

For the purpose of estimating primary productivity with absorption–quantum yield algorithms (Kiefer and Mitchell 1983; Smith et al. 1989; Sosik 1996), we propose using the method of Alvarez-Borrego (1996) to estimate the depth dependence of quantum yield:

\[
\phi(z) = \phi_{\text{max}} \left[1 + \left(\frac{E_{\text{act}}}{E_k}\right)^2\right]^{-1/2},
\]

where \(\phi(z) \) is the actual quantum yield at each depth, and \(\phi_{\text{max}} \) is the maximum quantum yield for low-light-adapted phytoplankton. We recommend a \(\phi_{\text{max}} \) of 0.1 mol carbon (mol quanta)$^{-1}$ to account for nitrate-based growth. Sosik (1996) has shown that phytoplankton from the 4.5% light level can have \(\phi_{\text{max}} \) of 0.1, and our data from Bahia de Todos Santos also suggest that \(\phi_{\text{max}} \) values can approach the theoretical maximum. Using our mean \(E_k \) of 250 µmol quanta m$^{-2}$ s$^{-1}$ results in a \(\phi \) of 0.085 and 0.016 at the 10% and 100% light depths, assuming surface irradiance is 1,500 µmol quanta m$^{-2}$ s$^{-1}$. For most of our sampling period, we had surface irradiance of approximately 500 µmol quanta m$^{-2}$ s$^{-1}$ (fig. 2b), which results in a \(\phi \) value of 0.045.

For algorithms like Kiefer and Mitchell's (1983), we also require values for the \(\alpha_{\phi(440)}^B \) for the 400–700 nm interval, weighted for the spectral distribution of irradiance. One way to estimate the absorption spectra of phytoplankton is to calculate the two absorption peaks and combine them with a normalized shape. Cleveland (1995) proposed empirical models to predict \(\alpha_{\phi(440)}^B \) for tropical and temperate waters. Bricaud et al. (1995) provide tables that allow estimates of \(\alpha_{\phi(440)}^B \) every 2 nm from 400 to 700 nm.

In general, our \(\alpha_{\phi(440)} \) values are larger than those estimated by Cleveland (1995) or Bricaud et al. (1995; fig. 9). At 676, our data agree well with previous mod-
els and with CalCOFI data (Sosik and Mitchell 1995). Differences between our values and those derived from Cleveland's (1995) model could be due to a lower package effect in the blue peak for our samples. It is important that further work be done to reconcile the variations in a_{ph} versus chlorophyll models.

Our proposed values for the physiological parameters may be appropriate for the CCS at large time and space scales. Torres-Moye and Alvarez-Borrego (1987) reported surface chl and primary productivity for waters off San Quintín for 1984, an El Niño year, which were an order of magnitude lower than during non–El Niño years. These latter authors reported assimilation numbers in the range of 2.0–5.4 mg C (mg chl)$^{-1}$ h$^{-1}$. However, Sosik (1996) reports ϕ_{max} values for a moderate El Niño year that are greater than those of Schofield et al. (1991) for a non–El Niño year. El Niño can cause large perturbation in the CCS, with suppressed upwelling and more extensive intrusion of warm, nutrient–depleted subtropical waters near the coast and in the northern California domain (Lynn and Simpson 1987). These perturbations will cause changes in surface and vertical distributions of chlorophyll biomasses. But the data of P–E, a_{ph}, and ϕ parameters from various years, seasons, and distances offshore in the CCS, or previous reports of assimilation numbers off San Quintín, Baja California; Monterey Bay; and the Ensenada Front, do not support the implementation of unique El Niño and non–El Niño photosynthetic parameterizations. And there is no evidence for seasonal differentiation based on the data we summarize in table 1. But since table 1 covers spring and summer seasons primarily, the limited data of Sosik (1996) for winter CalCOFI is not sufficient for making final generalizations about seasonal variability. Still, the variance within data sets at small time and space scales is larger than the variance between means for different regions or seasons. Thus it seems reasonable to use simplified working means for photosynthetic parameters for large time and space scales within the CCS. This approach may provide reasonable large-scale estimates, but poor small-scale instantaneous estimates of primary production.

ACKNOWLEDGMENTS

We thank J. Sidón, M. Díaz, and M. López for their help with field and laboratory work, and J. M. Dominguez and F. J. Ponce for drawing the figures. We thank R. Millán–Núñez for allowing us to use the scintillation counter at UABC. JL Swan provided excellent assistance in preparing the final edited draft. The Mexican CONACYT granted E. Valdez–Holguín a scholarship for his Ph.D. work. B. G. Mitchell was supported by NASA Grant #NAG5-6559.

LITERATURE CITED

